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Abstract—Although users of American Sign Language (ASL)
comprise a significant minority in the U.S. and Canada, people
in the Deaf community have been unable to benefit from
many new technologies, which depend upon vocalized speech,and
are designed for hearing individuals. While video has led to
tremendous advances in ASL recognition, concerns over invasion
of privacy have limited its use for in-home smart environments.
This work presents initial work on the use of RF sensors, which
can protect user privacy, for the purpose of ASL recognition.
The new offerings of 2D/3D RF data representations and optical
flow are presented. The fractal complexity of ASL is shown to
be greater than that of daily activities - a relationship consistent
with linguistic analysis conducted using video.

Index Terms—American Sign Language, radar micro-Doppler,
RF sensing, gesture recognition

I. INTRODUCTION

Users of American Sign Language (ASL) make up over

1 million people in the U.S. and Canada, based on statistics

provided by Gallaudet University (the world’s only university

designed to be barrier-free for deaf and hard of hearing

students located in Washington, D.C.). People in the Deaf

community, who rely on ASL as their primary mode of com-

munication, rely heavily on technology as an assistive device

as they navigate communication/language barriers that status

quo society often creates. Unfortunately, many technologies

are designed for hearing individuals, where vocalized speech

is the preferred mode of communication, and has driven a

burgeoning market of voice recognition software and voice-

controlled devices. This precludes the Deaf community from

benefiting from advances in technology, which, if designed

to be compatible with ASL, could in fact generate tangible

improvements in their quality of life.

Research related to technologies for the deaf or hard of hear-

ing (HoH) has been ongoing for the past three decades, but, has

primarily focused on camera-based and wearable technologies,

such as gloves or wrist bands containing accelerometers and

other sensors to translate sign language into voice or text.

Among these approaches, sensor-augmented gloves have been

reported to typically yield higher gesture recognition rates than

camera-based systems. However, such wearable gloves cannot

capture intricacies of sign languages offered through head and

body movements [1], [2]. This issue is addressed by optical

sensors, however, video cameras trigger user concerns over

privacy and require light to be effective.

Moreover, previous investigations of these existing proto-

types often fail to involve participants and investigators fluent

in ASL. In a preliminary focus group we conducted, Deaf

participants reacted negatively to the idea of having to use

anything wearable in their daily lives. Wearable technology

limits signer’s freedom in conducting daily activities and is

not designed with ASL movements and language constraints

in mind. In contrast, the Deaf participants reported that

while they used on a regular basis some form of video-

based technology for communication in their jobs; those video

technologies have limitations (such as a narrow field-of-view,

privacy issues, and reliannce on light). Although video tends

to be viewed favorably for interpersonal communication with

society-at-large, Deaf participants in our pilot study focus

group lamented its limitations – video usage was dependent

upon being in an office/work environment or with access to

cell phones (and battery life). A significant thematic point

of discussion that occurred with the Deaf participants was

concern over technology enabling invasion of privacy and

potential surveillance of their personal and private lives.

In contrast, especially in the context of technologies for

the deaf, RF sensors have several advantages over alternative

sensing modalities, which make them uniquely desirable. RF

sensors are non-contact and completely private, fully oper-

ational in the dark, and can even be used for through-the-

wall sensing. Most importantly, RF sensors can acquire a new

source of information that is inaccessible to optical sensors:

visual representation of kinematic patterns of motion via the

micro-Doppler signature [3], as well as more accurate velocity

measurements and range profiles.

This paper represents the first publication investigating RF

sensor-based ASL recognition and offers a linguistic perspec-

tive to radar signal understanding. In Section II, we first

discuss the importance and contribution of kinematics to the

recognition of ASL. Next, in Section III, the radar studies

conducted with Deaf participants is described. In Section

IV, the radar measurements acquired for different signs are



Fig. 1: Listing of signs/sign sequences collected during experiments

presented and discussed via consideration of micro-Doppler

signatures and range-Doppler videos. The concept of optical

flow, which originates in video processing to capture the

kinematics of each pixel, is presented in Section V. The optical

flow of Kinect measurements as well as radar data is compared

for the cases of sign language usage and daily activities. It is

observed that, on average, the fractal complexity of the optical

flow for daily activities is lower than that of ASL usage. In

Section VI, conclusions and future work are discussed.

II. LINGUISTIC SIGNIFICANCE OF KINEMATICS

In speech communication, quantitative measurements of the

temporal dynamics have resulted in fundamental insights into

perceptual and mathematical properties of information ex-

change [4] . Temporal quantification of the properties of signed

languages has been, to date, substantially behind that of speech

due to the higher dimensionality of visual modality. When

sign language linguistics research began in 1960s, signs had

been defined based on their static properties: handshape (HS),

place of articulation (i.e. location of the articulator/hand at the

beginning and end of the sign), and handshape orientation [5].

An early study of signers’ perception of writing in point-

light displays [6] has demonstrated that signers viewing the

dynamics of hieroglyph writing can tell the difference between

‘strokes’ (information-bearing portions of point-light move-

ment) and ‘transitions’ (movement of the point-light from the

end of one meaningful portion, to the beginning of another).

A 2x2 Latin Square design that assessed the difference in

perception between signers and non-signers, and users of

Chinese and English, showed that sensitivity to transitions was

due entirely to experience with sign language, and not due to

experience with hieroglyphic writing systems.

Current neurolinguistic research indicates that dynamic

properties of signs (speed and temporal contour of motion)

contribute crucial linguistic information to the meaning of

signs [7], [8]. Analysis of information content in speech vs.

everyday motion using the visual properties of the signal

and optical flow [9], [10] has indicated that signers transmit

more information (in the sense of mathematical entropy) than

humans carrying out dynamic tasks, and that the intelligibility

of a signing stream is crucially dependent on the ability to

parse entropy changes in visual information [11], [12].

Thus, although radar cannot pick up static hand shapes,

it does allow for improved measurements of the temporal

dynamics of signs in conjunction with shape dynamics, com-

bining information picked up from the moving hands with

the information on other articulators (head and body). This

approach unites the data from the better-studies parameters of

handshape, orientation, and place of articulation with dynamic

data on motion. Our goal in the present analysis is to build

on analytical understanding of human signal parsing for sign

language [11] and demonstrate that radar data can be used

for distinguishing between signing and biological motion (e.g.

cooking, laundry-folding) that can go on inside the house, but

with better sensitivity than what has been shown for 2D video

data [9], [10].

III. STUDY DATA

As an initial pilot study to investigate radar measurements

of the linguistic and kinematic properties of ASL, three Deaf

participants were recruited. The study began with a 30-minute

informative session where researchers described each task.

After being informed about the content and aims of the study,

participants signed informed consent forms. Study participants

were then asked to demonstrate ASL signs during two condi-

tions: 1) individual words and 2) sequences of sentences. The

study lasted approximately 75 minutes. Participants received

a $25 gift card for completing the study. Figure 1 provides a

complete listing of the words and sentences comprising these

experiments. Three repetitions of each word were collected

per participant, resulting in a total of 9 samples per word.

Words were selected from the ASL-LEX database (http://asl-



lex.org/), choosing words that are higher frequency, but not

phonologically related to ensure a more diverse dataset. Each

sequence of sentences was collected once per participant,

resulting in 3 samples per sentence. Sentences were chosen

from those used in previous linguistic studies of ASL by one

of the co-authors. In all experiments, participants were asked

to begin with their hands placed on their thighs, and to return

to this position once done signing.

Radar measurements were acquired using a Texas Instru-

ments 77 GHz FMCW transceiver, with a transmit waveform

bandwidth of 750 MHz. Participants were asked to sit on

a bar stool facing the RF sensor and a Kinect sensor at a

distance of roughly 1 meter. Prompts indicating the sign or

sequence of signs to be observed were communicated using

a computer monitor placed directly behind the sensor, so that

the visual cues would ensure the participant remained facing

the sensors throughout the experiment. The Kinect sensor data

have been used for comparison with radar data, and to annotate

the micro-Doppler signatures and optical flow plots given in

this paper. Annotations were performed by a Child-of-Deaf-

Adult (CODA) fluent in ASL who made manual notations of

the Kinect video frames, which were then correlated to the

time axis of the radar data.

IV. RADAR MEASUREMENTS OF ASL

Unlike video, radar measurements are not inherently an

image, but are actually a time-stream of complex I/Q data

from which line-of-sight distance and radial velocity may

be computed. In this work, the RF data was visualized in

two ways: 1) as a short-time Fourier transform of the data,

computed to find the spectrogram, or micro-Doppler signature

of the motion; and 2) as a range-Doppler video, where each

frame is a range-Doppler map formed by computing the 2D

FFT of the data for each sweep of the FMCW radar [13], [14].

A. Experiment 1: Single Words

Illustrative samples of the micro-Doppler signatures for

several ASL signs are given in Figure 2. Due to space

constraints, not all signatures could be shown, however, there

are a number of observations important to note:

• The starting position of the hand affects the initial and

final frequency components measured. In the case of our

experiments, participants started with hands on the thighs.

As signing requires raising the arms, typically with a

motion away from the radar, towards the body and at

the level of the chest, this motion resulted in negative

frequency spikes at the beginning of all samples.

• For synchronized motions where both hands move in

tandem, or one hand is moving alone, the sequential

nature of the motion is evident from the micro-Doppler

signature. The signature has either a positive or a negative

Doppler frequency at a given time, not both. Examples

include the signs for you and health.

• In signs where the hands move complementarily, e.g.

opposite directions, both positive and negative micro-

Doppler components are present simultaneously. Exam-

ples include walk and friend.

• When more surface area of the hand(s) faces the radar

line-of-sight, the received power of the signal may be

observed to be greater. Examples include drink and

breathe. Notice that the drink micro-Doppler signa-

ture has two vertical spikes; one due to raising the hand

cupped, the second lowering the hand. The first peak has

a greater intensity as the outside of the hand faces the

radar. Once virtual cup is lifted, the side of the hand

faces the radar, and this dominates the return signature,

but with lesser intensity.

• In signs with repetitious movements, the number of repe-

titions can be counted from the micro-Doppler signature.

Examples include knife and walk.

• The affect of aspect angle between the line-of-sight and

direction of motion can be observed in the signatures. For

example, the sign for help involves primarily vertical

movement, which is tangential to the radar line-of-sight,

and hence has a low Doppler frequency. As the hand

moves higher, however, non-zero Doppler does appear,

resulting in vertical streaks in the signature as the hands

move upwards and downwards.

• The effects of occlusion can be observed in some signa-

tures. Consider the sign for write, which is expressed

by holding the left hand and dragging the right hand (with

fingers as though holding a pen) across the inside of the

palm. Whereas the sliding motion in knife is clearly

visible (fingers graze top of the fingers in left hand), in

the sign for write, the left hand shields the right hand

swiping motion - at least partially - from the radar.

The range-Doppler videos enable the simultaneous obser-

vation of the radial distance to the radar as well as the radial

velocity. An example showing a sequence of several frames

for the sign of breathe is given in Figure 3. The participant

is initially sitting on a stool with hands on knees. As the hands

move upward towards the chest, the peak power is received

from the torso, accompanied by a slight negative velocity, due

to the motion of the hands away from the radar (Frame 323).

Once the hands reach the chest, momentarily there is a pause

before the hands move towards the radar. Frame 328 shows

the instant after the pause, where still the largest reflection is

at 0 Hz from the torso, but now there are some slow positive

velocity components. The forward motion reaches its fastest

point in Frame 331, and both the torso return as well as

the return from the hands and arms (now at a large positive

velocity) can be visible from the range-Doppler video. When

the extension of the hands is at is farthest from the body

(closest to the radar), again there is a moment of zero velocity

(Frame 333) followed by a large negative velocity as the hands

move back towards the chest (Frame 334).
It may be observed that the hands move about 2 range

bins closer to the radar than the torso. At 750 MHz, each

range bin corresponds to about 20 cm displacement. For a

person with average arm length, during the course of enacting





the breathe sign, the arms move about 25-30 cm. This is

consistent with the radar measurement of 2 range bin dis-

placement. The range resolution of the radar can be improved

through transmission of a waveform with greater bandwidth.

In this case, the hand displacement could be more accurately

measured.

B. Experiment 2: Sequences of Sentences

Although the measurements of individual signs is helpful to

gaining a preliminary understanding of the shape and features

of motion in ASL, typical signing patterns are greatly affected

by coarticulation: the effect of previous phenome influencing

subsequent phenomes. In sign language, coarticulation occurs

because the initial motion of a sign depends or where the

hands were located at the end of the previous sign. In our

experiments, the participant always began with hands on the

knees; however, when the same sign is used mid-sentence,

the hands will not be starting from this position. Consider, for

example, the sentence ‘‘Wrong you. Meeting starts

time two. You tell me noon.’’ depicted in Figure

3 includes the sign for you twice. This sign is clearly visible

in the micro-Doppler signature as the two peaks with the

greatest positive velocity or micro-Doppler frequency. The

second incidence of you is entered rapidly, nearly instantly

reaching the peak micro-Doppler frequency, whereas the first

incidence has a finite slope reaching the peak frequency. This

difference in acceleration is due to ASL coarticulation and is

visible in the radar measurements.

As another example, consider the sentence sequence ‘‘My

mother sick. Mind clear fine. But weak

can’t walk herself can’t.’’ The individual

measurement of the sign walk reveals that it contains two

strong positive and negative peaks together with some smaller

frequency components. This signature can be identified

in the micro-Doppler signature, but the initial and final

frequencies of the sign differ from that seen in the individual

measurement, again due to coarticulation and transitions

between previous and subsequent signs.

V. OPTICAL FLOW FROM RADAR VERSUS VIDEO

Optical flow is a technique often used in computer vision

to determine the apparent motion of image objects between

two consecutive frames caused by either the movement of the

object or camera. When applied to consecutive video frames,

the optical flow is a 2D vector field, where each vector is a

displacement vector showing the movement of points from one

frame to the next. In linguistic studies of ASL, optical flow

has been used to extract kinematic metrics. The displacement

of an object divided by the time interval between frames thus

gives an estimate of object velocity, ~vOFV , in the 2D plane

perpendicular to the ground.

A. 3D Velocity Estimation via Optical Flow

Optical flow can also be computed from radar data using

the range-Doppler videos defined in the previous section.

However, in this case, the optical flow carries different physical

Fig. 5: Geometry of video and radar velocity measurements.

meaning. Because radar measures range and velocity along

the slant range, the optical flow of radar measurements are

providing kinematic information along the radial direction (not

in azimuth or elevation). Optical flow computed vertically

along range indicate the displacement versus time, or radial

velocity, ~vOFR, whereas computation along the horizontal

Doppler axis maps to change in radial velocity versus time,

or radial acceleration, ~aOFR.

The difference in the geometry of these measurements is

shown in Figure 5, while resulting optical flow diagrams

for radar and video are compared in Figure 6 for the sign

breathe. It may be observed that while the velocity esti-

mates from optical flow of video and radar share a similar

shape, the radar data exhibit a greater change in pixels per

frame than video as well as more texture and detail. Moreover,

it is important to note that the velocity estimates of radar and

video can be combined to estimate a 3D directional velocity

vector, ~v. This is a good example of how radar data can be

used in fusion with video data to compensate for weaknesses

inherent to each modality: radar is effective at measuring

radial kinematics, which is difficult for video; however, spatial

motion perpendicular to the radar line-of-sight that would

difficult to measure with radar is quite easily captured by

video. Thus, RF sensors can improve the characterization of

ASL kinematics in three-dimensions.

B. Fractal Complexity of Optical Flow

Another way of evaluating the information transfer from

frame to frame due to human motion is the fractal complexity

of the optical flow. First, the power spectral density (PSD) for

each velocity is obtained by computing the Fourier transform

of the velocity spectrum versus time. This results in a matrix

M(j, f) where M is the magnitude, j is a velocity bin, and

f is a frequency bin. The fractal complexity, β(j), is related

to the magnitude at each velocity bin j as follows:

M(j, f) =
a

∣

∣f
∣

∣

β
(1)

where a is an amplitude fitting variable [10]. Taking the

logarithm of both sides, a linear expression may be found as

ln(M) = ln(a)− βln
∣

∣f
∣

∣ (2)



Fig. 6: Optical flow computed from radar and video data for the sign breathe.

A simple linear fit is then performed on ln(f) versus ln(M),
where β is the slope and a is the intercept on a log–log plot.

If M(j, f) is integrated over j, an overall velocity spectrum

can be obtained, which, after fitting, then results in an overall

fractal complexity, β̄.

RF measurements from two participants enacting eight

different daily activities (building legos, playing chess, cook-

ing, painting, eating, vacuuming, folding laundry, and ironing

clothes) were acquired for a duration of 10 minutes. This data

was then cropped into 20 second, non-overlapping segments,

to yield 30 samples per activity. ASL sentence sequences

acquired under Experiment 2 from three different Deaf partici-

pants, as tabulated in Figure 2, yielded 3 samples per sentence

with approximately 20 second duration. The average β̄ value

of ASL was found as 201.8, while that for daily activities

was lower with an average value of 186.8. This reflects the

increased information present in the ASL signs due to the

presence of communications and underscores the importance

of not merely equating ASL with gesturing. Thus, fractal

complexity may be a metric useful for identifying periods of

communicative signing from motions encountered during the

normal course of daily living.

VI. CONCLUSION

This paper presents initial work exploring different ways

in which RF sensors can contribute to linguistic studies of

ASL through improved measurements of hand, arm, and

upper body kinematics. Our results show RF sensors can

also extract estimates of fractal complexity, a metric that has

shown a difference in bias between in daily motions and ASL

signing periods. In future work, we plan to expand analysis to

different aspect angles, different RF frequencies, and exploit

fractal complexity for the segmentation of extended duration

observations in to intervals of “signing” and “daily activity.”

This represents an important first step in application of RF

sensors for sign language driven smart environments.
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