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Low-Frequency Entrainment to Visual Motion
Underlies Sign Language Comprehension

E. A. Malaia , S. C. Borneman , J. Krebs , and R. B. Wilbur

Abstract— When people listen to speech, neural activity
tracks the entropy fluctuation in the acoustic envelope of
the signal. This signal-based entrainment has been shown
to be the basis of speech parsingand comprehension. In this
electroencephalography (EEG) study, we compute sign lan-
guage users’cortical trackingof changes in visual dynamics
of the communicative signal in the time-direct videos of sign
language, and their time-reversed counterparts, and assess
the relative contribution of response frequencies between.2
and 12.4 Hz to comprehension using a machine learning
approach to brain state classification. Lower frequencies of
EEG response (.2-4 Hz) yield 100% classification accuracy,
while information about cortical tracking of the visual enve-
lope in higher frequencies is less informative. This suggests
that signers rely on lower visual frequency data, such as
envelope of visual signal, for sign language comprehension.
In the context of real-time language processing, given the
speed of comprehension responses, this suggests that flu-
ent signers employ a predictive processing heuristic based
on sign language knowledge.

Index Terms— EEG, sign language, perceptual sampling,
vision, language comprehension.

I. INTRODUCTION

THE field of spoken language processing has accu-
mulated substantial correlational evidence that spoken

language comprehension relies on neural activity tracking
entropy fluctuation in the acoustic envelope of the signal
[1]–[3]. This envelope tracking at a range of frequencies
between 100 Hz and 1 kHz (i.e. matching the human vocal
range, cf. [4]), also sometimes termed signal-based entrain-
ment, or frequency-following response (FFR), forms the basis
of speech parsing and comprehension [5], [6]. As compared
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to speech, sign language processing and comprehension is
not well understood, and lacks neurocomputational processing
models. While it has been established that the visual signal for
sign languages contains higher entropy (i.e. are less predictable
across multiple time-scales) than non-communicative human
biological motion [7]–[9], the question of whether human
sensitivity to entropy of the visual signal might support sign
language processing in the same manner it supports speech
comprehension has not been posited to date. An EEG study
of signers’ and non-signers entrainment to the amplitude of
visual frequencies in sign language (quantified by Instanta-
neous Visual Change (IVC) metric, equivalent to loudness
for speech) indicated that in frontal regions, fluent signers
showed stronger coherence to IVC than non-signers [10].
Low-frequency entrainment to sign language video signal
‘loudness’ was found in both signers and non-signers between
0.4 and 5 Hz, peaking at 1 Hz. However, lack of a base-
line condition - a non-linguistic visual stimulus – prevents
a conclusive interpretation of the results, which are also
counter-intuitive in light of current understanding that visual
cortex responds in the alpha band in response to aperiodic
stimulation [11], [12]. Thus, if modality-driven preferences
determine the spectrum of entrainment for the stimuli, then
peak coherence to sign language visual stimuli in both signers
and non-signers should be observed around alpha frequency
(8-12 Hz). It has thus remained unclear whether similar-
ity between signers’ and non-signers’ neural responses per-
formance reflected sign language processing per se (which
non-signers did not know), or was part of the response to
the lower-level visual features associated with the IVC metric.
The work to understand neural bases for scene categoriza-
tion, on the other hand, has identified links between neural
activity and visual stimuli, separating the timecourses for
visual feature encoding (i.e. bottom-up processing, occurring
at 90 ms post-stimulus onset, or 10 Hz), as well as higher-level
cognitive processing, such as categorization (or top-down
processing, peaking between 150 and 200 ms after image
onset and persisting across the trial epoch, below 5 Hz [13]).
This suggests that an entrainment to a signal above 10 Hz (or
in the range of alpha frequency in EEG response) is likely
to be elicited by low-level (higher-frequency) processing of
rapidly changing visual features. On the other hand, top-down
processing based on global scene categorization (or lexical
retrieval, in case of sign language) would be expected to yield a
lower-frequency response (under 5 Hz). To investigate signers’
response to multiple visual frequencies in the visual signal,
we designed an experiment to assess the relative contribution
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Fig. 1. a) a dynamic signed sentence as a sequence of still frames; b) optical flow data in time domain; c) comparison of PSD of optical flow in
frequency domain for sign language (magenta) and reversed videos (blue).

of frequencies from.2 to 12.5 Hz to the measures of cortical
coherence to changes in the signal. We hypothesized a range
of possible outcomes for the investigation. Based on prior
research, we hypothesized a range of possible outcomes for
the investigation. Prior observations of entrainment to visual
stimuli in the alpha (8-12 Hz) range [14] might suggest
that sign language, as aperiodic stimulus, is processed in the
bottom-up manner, based on rapid dynamic changes in the
visual signal. Alternatively, if signers’ knowledge of the sign
language allow for lower-frequency sampling of the visual
input, and reliance on predictive processing during language
comprehension [13], then observations of lower (under 5 Hz)
frequencies of EEG exhibiting coherence with sign language
and reversed videos stimuli would be expected.

II. MATERIALS AND METHODS

A. Participants

Proficient users of Austrian Sign Language (ÖGS) were
recruited, who reported normal or corrected-to-normal vision,
and no history of neurological disorders. All of the partici-
pants used ÖGS as their primary language in daily life, and
were members of the Deaf community in Austria. Their sign
language proficiency was tested by a certified sign language
interpreter. 24 participants (13 male) aged between 28 and

68 years (M = 42, SD = 12.27) took part in the study.
All procedures in the study were undertaken with the under-
standing and written consent of each subject. The study
conforms to the Declaration of Helsinki (World Medical
Association, 2013). The Institutional Review Board of the
University of Salzburg approved the design of the study and
engagement of human participants.

B. Stimuli and Procedures
Each participant was shown a mixed set of videos, which

contained 40 videos that were sentences in Austrian Sign
Language (ÖGS, signed by a fluent signer), and 40 videos
which were time-reversed versions of these sentences (i.e.
not linguistically acceptable), as well as filler videos. Filler
videos consisted of videos of sign language sentences with
classifier constructions and topicalized sentences using SOV
and OSV word order, as well as simple sentences with SOV
word order (200 total filler sentences). Neural and behavioral
responses to filler videos used to prevent habituation are
reported in detail in [15], [16]. Overall, behavioral data in
response to filler stimuli were similar to that for time-direct
videos under analysis. However, as spectro-temporal para-
meters of these videos differed from the ones considered
here, they were not amenable to the same type of analy-
sis. Sign language stimuli consisted of dynamic videos of
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signed sentences, easily understood by proficient sign language
users (see Figure 1). The list of glossed sentence trans-
lations is provided in the appendix. To produce linguisti-
cally non-acceptable stimuli, we time-reversed sign language
videos, to hold constant the spatiotemporal frequencies of
the visual stimuli in sign-language and non-sign language
categories. Time-reversed videos thus contained no compre-
hensible sign language; we also obtained behavioral responses
for each stimulus, evaluating proficient signers’ assessment of
how linguistically acceptable each stimulus was (a single stim-
ulus contained a video of a signed sentence, or a time-reversed
representation of it). The conditions were pseudo-randomized
(such that no condition repeated more than twice in a row).
Two different pseudo-random orders of stimuli were used,
balanced among participants. Each participant was presented
with a training block of videos prior to the experiment,
to become familiar with task requirements, and to ask any
questions they had. The videos were presented on the screen
35.3 x 20 cm in size. The size of the videos was 1280 x
720 pixels. Participants were asked to avoid excessive motion
during the presentation of the video material. Every trial began
with the presentation of a fixation cross (2000 ms) to allow
the participant to prepare; this was followed by a 200 ms
presentation of an empty black screen, and then the stimulus
video, which appeared in the middle of the screen. At the
end of each trial, a question mark appeared in the center of
the screen for 3000 ms, during which the participants were
instructed to perform the rating task by pressing a key on the
keyboard. In the rating task, participants had to rate the videos
on a scale from 1 to 7 (1 for ‘that is not ÖGS’; 7 for ‘that is
good ÖGS’, and 4: not ÖGS, but understandable).

C. EEG Data Acquisition and Processing
Data collection was carried out on a 26-channel EEG system

at a rate of 500 Hz using active electrodes. The electrodes were
placed on the participant’s scalp according to the standards of
the 10/20 system (Fz, Cz, Pz, Oz, F3/4, F7/8, FC1/2, FC5/6,
T7/8, C3/4, CP1/2, CP5/6, P3/7, P4/8, O1/2), and secured with
an elastic cap (Easy Cap, Herrsching-Breitbrunn, Germany).
The impedances of all electrodes were kept below 5 k�.
The eye movements and blinks were monitored and recorded
using electrodes placed over the right and left outer canthi
(horizontal eye movement, HEOG), and left inferior and
superior orbital ridge (vertical eye movement, VEOG).The
AFz electrode functioned as the ground electrode during the
recording. All electrodes were referenced to the electrode on
the left mastoid bone. At the start of each trial, numerical
trigger codes were sent by the stimulus presentation computer
to the EEG recording computer, and time-stamped on the EEG
recordings for synchronization. Offline, following the record-
ing, electrodes were re-referenced to the averaged data from
the electrodes at the left and right mastoids. The signal was
filtered with a bandpass filter (Butterworth Zero Phase Filters;
high pass: 0.1 Hz, 48 dB/Oct; low pass: 30 Hz, 48 dB/Oct)
in Brain Analyzer. As we planned to analyze coherence of
video and EEG data, the higher frequency data (EEG) needed
to be downsampled. As video data was recorded at 25 fps, the
highest computable frequency for it – Nyquist frequency – is

12.5 Hz. The signal was then corrected for ocular artifacts
using the Gratton and Coles method [17], and segmented from
recorded triggers – the onsets of video stimuli to 5 seconds
following the onset. The full duration of video stimuli was
between 5 to 7 seconds; the 5 second cutoff ensured that
only neural responses to ongoing video stimuli were analyzed
(see Figure 2).

D. Optical Flow Extraction From Video Stimuli and
Coherence Calculation

Optical flow is a technique frequently utilized in computer
vision to quantify the motion of image content between two
adjacent frames of a video recording. Optical flow is a metric
that tracks signal variability across time by quantifying the
velocity magnitude of each object (based primarily on edge
contrast values) in pixels per frame. Although optical flow
analysis converts each frame to a velocity profile, it does not
filter the spatial content of dimensions, as the resulting signal
contains velocity per pixel versus time, preserving both the
spatial and temporal information available in the video. Based
on optical flow, the velocity signal is analyzed according to
fractal complexity using the formula M( f ) = α

f β , where M is

the power spectral density profile of the signal (PSD), f is the
frequency, α is the PSD magnitude, and β is the parameter
for fractal complexity of the signal. By computing the optical
flow measure in video, we quantify the distance traveled by
each individual pixel as it moves from frame to frame, such
that intensity of optical flow is proportional to the area of
the moving part in the video. Optical flow was computed
for each stimulus video using the vision toolbox optical flow
function from MathWorks’ MATLAB. This function produces
an output matrix of size equal to the input video frame, such
that each element of the matrix identifies the magnitude of
optical flow velocity (pixels per frame) between the two frames
for each corresponding pixel in the video. An optical flow
histogram (which can be thought of as a velocity spectrum)
is thus created for each frame of the stimulus video. Then,
for each frame (25 frames for each second of the video), the
amplitudes across all velocity bins were added to calculate
the total magnitude of optical flow for each frame, which was
used an instantaneous measure of motion in the stimuli. Across
multiple frames this produced an optical flow timeseries.

Coherence between the optical flow timeseries of each
stimulus video and the neural response timeseries in each
electrode for each participant was then calculated. To compute
coherence at a given frequency, both timeseries were first
filtered at that frequency (from 0.02 Hz to 12.5 Hz, as limited
by the 25 fps video frequency) using a second-order IIR
bandpass filter. The filtered timeseries correlation was then
calculated using canonical correlation analysis with MATLAB
NoiseTools toolbox [18]. Both the peak correlation and the
timeshift of that correlation were extracted for each frequency
for each participant, stimulus video, and electrode location.

E. Data Setup and Pipelines for Machine Learning

Our intent for machine learning analysis was, first, to assess
predictability of the two conditions, time-direct sign language
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Fig. 2. Comparison of EEG responses to sign language (black) and time-reversed videos (red). For the purposes of presenting the data, ERPs
are baseline-corrected using 300 ms epoch prior to each trigger; negative is plotted upward. Blue lines indicate electrode clusters used for analysis
(anterior (FC1, FC2, F3, F4, Fz); posterior (P3, P4, P7, P8, Pz); left (FC5, C3, CP1, CP5, T7); right ( FC6, C4, CP2, CP6, T8).

and time-reversed sign language stimuli, from the neural data
on frequency coherence with the stimuli videos’ optical flow.
The secondary goal was to evaluate the predictive value of
input parameters – in this case, frequency bins of coherence
data – for such classification. To construct the data matrix,
we used the peak cross-correlation values from 62 frequency
ranges (from 0.2 Hz to 12.4 Hz in 0.2 Hz increments) over
each of the four brain regions (anterior, comprising data
from electrodes in positions F3, F4, Fz, FC1, and FC2;
posterior comprising data from electrodes in positions P7,
P8, P3, P4, Pz; left, including data from electrodes C3, FC5,
T7, CP1, CP5; and right, with the data from C4, FC6, T8,
CP2, CP6) for each of the 0.2 Hz-wide frequency bins of
optical flow PSD, and each participant. As differing data
distribution can negatively impact performance of machine
learning algorithms by over-weighting less clustered input
parameters, we performed scaling data transform such that
each of the parameters would have a mean value of zero
and a standard deviation of one. Six classifier algorithms
were used to evaluate the performance: two linear algorithms
(Linear Regression (LR) and Linear Discriminant Analysis
(LDA)), and four nonlinear algorithms (k-nearest neighbors
(kNN), classification and regression trees (CART), Naïve
Bayes (NB), and support vector machines (SVM)), with

default tuning parameters of Python sklearn library. Machine
learning algorithms, in general, are data-greedy methods that
create complex representation models based on raw data;
however, the algorithms vary in terms of weighting of different
parameters of the raw data; thus, it is rarely possible to
determine in advance, which types of algorithms will perform
well on the data. The six classifier algorithms chosen included
a variety of algorithms differing in assumptions about the
data. For example, linear algorithms (Linear Regression (LR)
and Linear Discriminant Analysis (LDA) assume Gaussian
distribution of the data, but differ in terms of performance on
well-separated classes (i.e. LR can be unstable, while LDA
is more appropriate). Among the four nonlinear algorithms
used, classification and regression trees (CART) are simple
self-correcting (pruning) algorithms that perform well in the
presence of outliers. Naïve Bayes (NB) algorithm, on the
other hand, assumes conditionally independent parameters (i.e.
non-interacting ones) – a very strong assumption, which rarely
holds on real data; the algorithm, nevertheless, can perform
well on data sets where parameter dependence is noisy.
K-nearest neighbors (kNN) algorithm makes no assumptions
about the functional form of the classification problem, but,
on the other hand, is highly reliant on training data, such that it
performs well in situations where training and testing data sets



2460 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 3. Behavioral response distribution in Sign Language and Reversed Videos conditions. A. Acceptability ratings on Likert scale (7 – good
Austrian Sign Language; 4 - not Austrian Sign Language, but understandable; 1 - not Austrian Sign Language), with significantly lower ratings for
time-reversed videos; B. Reaction times (in ms) to the two conditions did not differ significantly.

are very similar (i.e. individual participants’ parameters are
alike across the population). Support vector machines (SVM)
are flexible in terms of analysis, and can learn problem
representation from the data itself, but are, as a result, the
most data-greedy among the options. Application of multiple
algorithms to the data set in its entirety, as well as sub-sets,
provides the most thorough understanding of potential models
that can best describe the data. During classification, 20% of
the data was retained for a validation hold-out set (sample of
data held back from the rest of the analysis and modeling).
We used a 10-fold cross-validation approach with the test
harness pipeline configuration to prevent data leakage between
training and testing data in each cross-validation harness.

III. RESULTS

A. Behavioral Results

Data from the participants’ behavioral responses on the
Likert scale from 7 (‘that is good Austrian Sign Language’)
through 4 (’not Austrian Sign Language, but understandable’),
to 1 (‘that is not Austrian Sign Language’) indicated that
only sentences in the sign language condition were rated
as linguistically acceptable, while reversed videos of sign
language (i.e. not linguistically acceptable videos) were not
considered meaningful communication (sign language M =
5.80; SD = 1.48; reversed videos M = 1.72, SD = 1.35)
(see Figure 3). Paired t-test between individual ratings of
time-direct and time-reversed videos indicate significantly
higher ratings (t(23) = 14.01; p<.001) for time-direct videos.
Response times did not differ significantly between conditions
(t(23) = −1.3; p>.2; sign language M = 883 ms; SD =
535 ms; reversed videos M = 925 ms, SD = 541 ms).

B. Machine Learning Results

Peak coherence between the stimuli and neural activity
occurred between 100 ms and 250 ms post-stimulus onset
in response to both time-direct and time-reversed (not lin-
guistically acceptable) video stimuli conditions, as expected
for visual dynamic stimuli (cf. [13]). The cross-correlation
matrix of the input vectors (frequency coherence bins between
EEG and optical flow in the visual stimuli) to machine
learning pipeline is presented in Figure 4. The red line along
the diagonal represents self-correlation of individual input
parameters (coherence frequency bins). Notice the structure
in the matrix around the diagonal in the quadrant encom-
passing.4 to 4 Hz bins: dark blue suggests high values of
negative correlation of the parameters and red indicates high
positive correlation values, both of which are likely to weigh
strongly in classification. We used the bagged decision tree
classifier (ExtraTreesClassifier from Python sklearn library)
to estimate the importance of input parameters (i.e. coherence
frequencies) in the data set. The importance scores for all
input parameters was <0.01, with the exception of frequency
bins 0.8 Hz (importance score 0.16), and 1Hz (importance
score 0.16), highlighting relevance of these input parameters
for classification accuracy. The accuracy metrics for the algo-
rithms are summarized in Table I. Five algorithms (LR, LDA,
kNN, Naïve Bayes, and SVM) achieved 100% out-of-sample
prediction accuracy on hold-out dataset for the whole brain
data set. For region-specific analysis classification accuracy
remained above 80% accuracy, with most values above 90%
accuracy. Nonlinear Naïve Bayes performed at 100% accuracy
for each brain region separately as well as for the whole-brain
dataset.
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Fig. 4. Cross-correlation matrix of the input vectors (coherence between
EEG and optical flow in the visual stimuli, binned in.2 Hz frequency
increments). Both horizontal and vertical axes represent the same bins
(top to bottom and left to right). The red line along the diagonal represents
self-correlation of individual input parameters (value of 1, or perfect
self-correlation).

TABLE I
ACCURACY (IN PERCENT) ON HOLD-OUT SET FOR WHOLE-BRAIN,

AND SPATIALLY LOCALIZED INPUT PARAMETERS ACROSS

CLASSIFICATION ALGORITHMS. NOTICE HIGH PERFORMANCE OF

LINEAR AND NON-LINEAR ALGORITHMS

ACROSS BRAIN REGIONS

The high prediction accuracy in classifying the time-direct
vs. time-reversed conditions suggests that machine learning
algorithms successfully identify common neural responses to
visual linguistic stimuli based on stimulus-EEG coherence data
across frequency bins. To identify the independent contribution
of each frequency to successful classification, we repeated the
analysis, this time reducing the number of input parameters
used to 5 parameter vectors at a time: e.g. vectors for frequen-
cies 0.2 to 1 Hz (0.2, 0.4, 0.6, 0.8, and 1.0). The results are
summarized in Table II. Notice that lower frequency ranges
(up to 4 Hz) yield highest out-of-sample prediction accuracy,
with classification accuracy of 100% attained for a set of
frequency bins between.2 and 1 Hz using kNN, NB, and SVM
algorithm, while higher frequencies appear to contribute less
to recognition of neural state for language comprehension.

IV. DISCUSSION

To assess the relationship between neural data response to
visual entropy of the signal in linguistic (sign language) vs. not
linguistically acceptable (time-reversed sign language) condi-
tions, electroencephalography signal (EEG) was recorded from
participants who were fluent signers, while they were viewing

TABLE II
ACCURACY (IN PERCENT) ON HOLD-OUT SET FOR SPECIFIC

FREQUENCY BINS OF COHERENCE PARAMETERS. NOTICE >80%
ACCURACY IN IDENTIFICATION OF STIMULI TYPE AND

COMPREHENSIBILITY ACROSS ALGORITHM TYPES

FOR LOW-FREQUENCY (UP TO 4 Hz) DATA

sign language sentence videos, and the same videos that were
time-reversed. The participants rated the sentences on a Likert
scale from 1 (“that is not Austrian Sign Language”) to 7 (“that
is good Austrian Sign Language”). The sign language videos
and time-reversed videos differed only in the time direction
of the signal; all other spectro-temporal parameters of the
videos were the same. To relate the neural data to the video
data (sign language signal and time-reversed sign language
stimuli), we first quantified the video signal using changes of
optical flow across multiple visual frequencies. This measure
was linearly regressed against individual EEG signals of each
participant, such that peak cross-correlation frequency was
defined for each channel in the EEG data. We then employed a
variety of machine learning pipelines to evaluate whether brain
state of processing sign language was classifiable from the
state of watching time-reversed videos, equivalent in low-level
features; we also assessed relative contribution of brain regions
and specific frequencies to classification accuracy of six
machine learning algorithms. What we probed in our study is
whether neural response to the motion frequencies of the signal
is based on low-level feature assessment (in this case, low-
level, or sensory features describe high frequency motion at the
onset and offset of the signs), or on assessment of whether the
visual data contains any vocabulary items of the sign language
known. If high-frequency data were predictive of comprehen-
sion, it would indicate that low-level (motion-based) features
are indeed critical for sign recognition. However, as we iden-
tified low-frequency data as predictive of comprehension, this
suggests that participants rely not on local (higher-frequency)
motion features, but rather on slower (lower-frequency) global
visual features. The only possibility to do real-time processing
and respond rapidly to comprehension questions would be
to employ predictive processing: i.e. using low-frequency
sampling of the input signal, to retrieve a number of potentially
appropriate lexical/syntactic items from sign language vocab-
ulary, and rapidly reject those that do not fit the signal at the
next data point. The results indicated that electrophysiological
responses to visual language yield enough information for
successful classification. Cross-correlation analysis indicated
that frequencies under 4 Hz tended to contribute most weight
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to classification accuracy. Feature evaluation using the bagged
decision tree classifier also highlighted importance of 0.8 Hz
and 1Hz input parameters to classification accuracy. In gen-
eral, frequency-based entrainment to stimuli is an overar-
ching cortical mechanism of sensory processing evidenced
across modalities. For spoken language (with high temporal
variability of the signal) it is the envelope features, which
describe entropy fluctuations of the changing signal, that
predict comprehensibility of the signal [1], [2], [19]. For sign
language, circumstantial evidence from multiple behavioral
studies has pointed to the likelihood of a similar mecha-
nism. For example, [20] investigated the ability of signers
and non-signers (native users of Spoken English/American
Sign Language and Spoken Chinese/Chinese Sign language,
respectively) to parse dynamic point-light presentations of
‘pseudo-hieroglyphic writing’ (with novel stimuli created for
the experiment to mitigate for the Chinese Sign Language
users’ familiarity with hieroglyphic Chinese) [20]. Native users
of either sign language were able to perceptually separate
discrete segments, such as ‘strokes’ and ‘transitions’, in the
signal, while non-signers perceived point-light motion as con-
tinuous. Since no linguistic cues were available to signers
in these studies, motion entropy envelope tracking might be
one perceptual adaptation enhanced in sign language that
might allow signers to parse dynamic visual stimuli relying
on language-driven skills.

Infant studies provide further evidence for attentional rele-
vance of entropy-rich portions of visual signal during sensitive
period for language acquisition. [21] investigated infants’
attentiveness to fingerspelled stimuli in sign language. The
operational definition of visual sonority of the stimuli used in
the study is qualitatively based on Brentari’s [22] model of
sign language phonology, and is functionally equivalent to an
entropy measure in visual modality. In a preferential looking
paradigm, hearing 6-month-olds looked significantly longer at
high-entropy stimuli than low-entropy stimuli. This preference
disappeared in older infants (around 12 months of age) who
had not received any signed language experience. Perceptual
sensitivity to entropy (syllabicity) to auditory stimuli is known
to peak around six months and specialize to environmental
input by approximately 12 months of age [23], [24].

The present study links the research on neurobiologically-
motivated approaches to language comprehension [1] and
action processing [25] to computational modeling of infor-
mation transfer in communication [9], [26]. Both behav-
ioral (acceptability) and neural measures of comprehension of
sign language sentences appear rooted in entrainment of neural
activity to the dynamic variations in the entropy of the visual
signal, as measured by optical flow. The findings demonstrate
that cortical tracking of spectro-temporal dynamic entropy in
the visual signal of sign language relies on lower (under 4 Hz)
frequencies, and is likely mediated by predictive processing
mechanisms based on language knowledge. Identification of
common mechanisms underlying comprehension in speech
and sign, based on neural response to linguistic stimuli that
tracks the low-frequency envelope of signal entropy, could
help develop brain-based diagnostics for language processing
disorders for users of sign languages.

There were several limitations to the present analysis which
related primarily to the scope of the chosen question. We did
not specifically address the relationship between behavior
(and between-participant behavioral variability) and the neural
signal. In sign language populations, the participant pool is
often heterogenous, as strict inclusion criteria (participant
age, etc.) would severely limit the pool of participants.
Language proficiency assessment tools, or detailed description
of the grammatical structure, are yet unavailable for ÖGS.
Additionally, analysis focused on frequency-domain corre-
lation between the signal and the neural response, rather
than the relative location or timing of entrainment, or pos-
sible variations among participants –questions which certainly
deserve further scrutiny. It is possible that individual signs,
particularly those symmetric in the time domain, could have
been understood by signers. However, most signs (espe-
cially verb signs [27]) follow a non-symmetric dynamic
trajectory, with higher acceleration at the end of the sign.
Time-reversed sentence-level stimuli, thus, violated both syn-
tactic (word order) and phonological (motion profile) rules of
sign language, and, as such, were rated below understandable
threshold. The stimuli in the present study were controlled
for syntactic structure (simple sentences) to avoid possible
variability in processing strategies that are often seen in the
processing of more complex sentences [28]. The question of
possible variability in processing of more complex sentences
is very interesting, and should be subject to further research.
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