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Abstract—Deaf spaces are unique indoor environments
designed to optimize visual communication and Deaf cultural
expression. However, much of the technological research
geared towards the deaf involve use of video or wearables
for American sign language (ASL) translation, with little con-
sideration for Deaf perspective on privacy and usability of
the technology. In contrast to video, RF sensors offer the
avenue for ambient ASL recognition while also preserving
privacy for Deaf signers. Methods: This paper investigates
the RF transmit waveform parameters required for effective
measurement of ASL signs and their effect on word-level
classification accuracy attained with transfer learning and
convolutional autoencoders (CAE). A multi-frequency fusion network is proposed to exploit data from all sensors in an
RF sensor network and improve the recognition accuracy of fluent ASL signing. Results: For fluent signers, CAEs yield a
20-sign classification accuracy of %76 at 77 GHz and %73 at 24 GHz, while at X-band (10 Ghz) accuracy drops to 67%. For
hearing imitation signers, signs are more separable, resulting in a 96% accuracy with CAEs. Further, fluent ASL recognition
accuracy is significantly increased with use of the multi-frequency fusion network, which boosts the 20-sign fluent ASL
recognition accuracy to 95%, surpassing conventional feature level fusion by 12%. Implications: Signing involves finer
spatiotemporal dynamics than typical hand gestures, and thus requires interrogation with a transmit waveform that
has a rapid succession of pulses and high bandwidth. Millimeter wave RF frequencies also yield greater accuracy due
to the increased Doppler spread of the radar backscatter. Comparative analysis of articulation dynamics also shows
that imitation signing is not representative of fluent signing, and not effective in pre-training networks for fluent ASL
classification. Deep neural networks employing multi-frequency fusion capture both shared, as well as sensor-specific
features and thus offer significant performance gains in comparison to using a single sensor or feature-level fusion.

Index Terms— American sign language, gesture recognition, radar micro-Doppler, RF sensing, deep learning,
autoencoders.
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I. INTRODUCTION

MOST indoor environments designed by hearing individ-
uals present a variety of challenges to Deaf individuals,

who primarily perceive the world through visuo-spatial aware-
ness. American Sign Language (ASL) is widely used in the
Deaf community as a visual-kinetic mode of communication,
which requires direct visual observation of other signers to
be effective. Thus, Deaf spaces [1] - indoor environments
designed to optimize Deaf cultural expression - involve mod-
ifications, such as a higher number of windows, increased
lighting, furniture re-arrangements and even openings in win-
dows that allow clear sightlines, to improve visual accessibility
between signers.

Research on sensing technologies for the Deaf has primarily
focused on the use of video [2], [3] or wearable devices
[4], [5] for ASL translation and facilitating the understanding
of hearing individuals of Deaf communications. The objective
of this work, however, is to instead focus on machine under-
standing of ASL as a means for better designing technology
to serve the Deaf community. Through the involvement of
community partners, such as the Alabama Institute of the Deaf
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and Blind (AIDB), we aim to reflect a Deaf-centric approach to
ASL recognition, which reflects Deaf perspectives. Wearable
devices are intrusive, restrict natural hand usage, and burden
Deaf individuals based on “hearing” perceptions of deafness as
a disability, as opposed to a unique sub-culture of American
society. Video-based technologies, such as video-based cell
phone communication apps, are often used by the Deaf to
great benefit; however, in the context of smart environments,
where video would offer constant opportunity for surveillance,
cameras elicit significant concern over privacy.

In contrast, radio frequency (RF) sensors can operate even
in the dark, in a non-contact fashion. RF sensors only record
the range and velocity profiles of the signing motion, and,
thus, even if hacked, completely protect the privacy of the
individual (e.g. face) and environment (no visual background
information). Although RF sensing cannot offer complete
perception of sign language, which also involves facial expres-
sions and hand shapes, RF sensors are responsive to the
kinematics and position of the hands. Radar point clouds [6]
may be extracted from multi-channel RF sensors, however,
transmit waveform bandwidth bounds slant range resolution,
while the number of channels limits azimuth resolution. This
results in spatially and temporally sparse point clouds that are
not effective in capturing hand shape or motion dynamics.
Alternatively, the short-time Fourier transform (STFT) can be
used to compute the spectrogram of the RF sensor returns,
which reveals the unique patterns of micro-Doppler [7] fre-
quency resulting from signing. In recent prior work [8]–[10],
we showed that the RF micro-Doppler signatures are effec-
tive in capturing both linguistic and kinematic properties
of signing. Handcrafted features were extracted from the
micro-Doppler signatures obtained from an RF sensor net-
work and utilized to classify 20 ASL signs with %72.5
accuracy [10].

This paper explores the effect of various RF sensor trans-
mit waveform parameters and the fluency of ASL users on
the performance attained by deep learning based approaches
to RF-based ASL recognition. Over the past five years,
a significant body of work on RF sensor-based gesture
recognition [11]–[13] has emerged in the literature. While
some researchers have used “sign language gestures” to
test gesture recognition approaches, in fact, signing pos-
sesses a much greater degree of complexity and nuance
[14], [15]. Due to the communicative and linguistic nature
of the signal, signing presents additional challenges relating
to fine-grained temporal dynamics and linguistic parameters,
such as prosody (e.g. pauses and suprasegmental components,
such as phrase-final lengthening [16]) and grammatical struc-
ture. Moreover, the signing of hearing imitation signers is
distinguishable from that of fluent ASL signers [10], exhibit-
ing greater kinematic variation, more erratic cadence and
significant signing errors. Thus, both the transmit waveform
parameters can affect the extent to which the RF sensor
accurately captures motion during signing.

Although some studies, e.g. [17]–[21], of ASL recognition
have employed hearing imitation signers or ASL learners,
perhaps due to the greater ease in recruiting a larger number
of participants, the intended benefactor of Deaf spaces are

fluent ASL signers. Thus, in this paper, we investigate the
performance of transfer learning and convolutional autoen-
coders in the classification of fluent ASL signing and show
that 1) the accuracy achieved by deep neural networks (DNNs)
on imitation signing data is overly optimistic (higher) than that
achieved with fluent ASL data; and that 2) imitation signing
data is not effective in pre-training networks intended to
classify fluent ASL signing data. Furthermore, we compare the
performance achieved with RF sensors with different transmit
waveform, center frequency, pulse repetition frequency (PRF),
and bandwidth. Finally, we propose a multi-frequency DNN
for fusing the simultaneous measurements of three RF sensors
transmitting at different frequencies, boosting accuracy relative
to that achieved with feature-level fusion.

The paper is organized as follows. In Section II, a descrip-
tion of the RF sensor network and acquired datasets is given.
Section III examines the variation in DNN classification
accuracy across different transmit waveforms for both flu-
ent and imitation signing. In Section IV, the design of the
multi-frequency fusion DNN is presented, and results are com-
pared with that obtained from alternative fusion approaches.
Section V concludes the paper with a discussion of main
implications.

II. RF MEASUREMENTS OF ASL
Three different RF sensors are utilized in this work: 1) the

TI IWR1443BOOST 76 GHz - 81 GHz automotive short-range
radar (SRR) sensor, which has frequency modulated continu-
ous wave (FMCW) tranmissions; 2) the Ancortek 2400AD
transciever, which transmits FMCW with a center frequency
of 24 GHz; and 3) the Xethru X4M03 ultra-wide band (UWB)
impulse radar with a transmission frequency range of 7.25 -
10.2 GHz. Measurements were acquired with 77 GHz auto-
motive radar at two different bandwidths, namely, 750 MHz
and 4 GHz, while the 24 GHz radar was operated with a
bandwidth of 1.5 GHz, and the Xethru radar had a bandwidth
of 3 GHz. While the bandwidth of the 77 GHz sensor is
adjustable, the 24 GHz sensor allows for selection among only
three possible bandwidths, 1.5 GHz being the highest, and the
bandwidth of the Xethru sensor is fixed.

The three sensors were placed side by side, directly fac-
ing the participants, at an elevation of 0.91 m from the
ground. Participants sat on a chair directly facing a computer
monitor, which was placed immediately behind the radar
systems, and used to relay prompts indicating the signs to be
articulated. The radar systems were positioned at a distance
of 1.2 - 1.5 meters from the participant. The output trans-
mission power of the RF sensors are 4.3 mW, 100 mW, and
40 mW for the Xethru 10 GHz UWB, Ancortek 24 GHz
FMCW, and TI 77 GHz FMCW transceivers, respectively.
These levels are lower than those incurred during cell phone
usage, e.g. 250 mW to 2 W [22], and are further reduced
by propagation losses proportional to 1/r2, where r is the
distance between the sensor and user. This study was approved
by the Institutional Review Board (IRB) of the University of
Alabama.
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Fig. 1. Summary of RF sensor parameters and ASL signs in study.

A total of 6 fluent ASL users took part in the study of
whom 3 were Deaf and 3 were a Child-of-Deaf Adult (CODA).
A total of 15 hearing participants, who did not know sign lan-
guage, also participated. Hearing participants were first tutored
for about 10-15 minutes on how to articulate the desired signs.
During the experiment, hearing participants were prompted
with a copy-signing video were a CODA articulated the sign
and afterwards the participant was expected to repeat the
same sign. Participants were presented a random ordering of
single-word signs to foster independence in the repetition of
the signs. The 20 signs considered in this study were selected
using the ASL-LEX [23] database (http://asl-lex.org), choosing
words that are higher frequency, but not phonologically related
to ensure a more diverse dataset. The specific ASL signs used
as well as the number of samples acquired for different radar
waveform types and transmit parameters are listed in Fig. 1.

III. INFLUENCE OF RF TRANSMIT WAVEFORM

PARAMETERS AND FLUENCY ON ASL RECOGNITION

The signal received by a radar is, in general, weighted
summation of time-delayed, frequency-shifted versions of the
transmitted signal from multiple scatterers. In many practical
scenarios, it has been shown that the scattering from the human
body can be approximated using the superposition of returns
from K points on the body [24]. Thus,

x[n] =
K∑

i=1

ai ex p

{
− j

4π fc

c
Rn,i

}
, (1)

where Rn,i is the range to the i th body part at time n,
fc is the transmit center frequency, c is the speed of light,
and the amplitude ai is the square root of the power of the
received signal as given by the radar range equation [25]. Thus,
RF sensors provide a complex-time series of measurements in
the form x[n] = I [n] + j Q[n].

Typically, this data stream is re-shaped into a 2D matrix
for each RF receive channel, so that the columns represent
fast-time, e.g. range samples, and the row represents slow-
time, e.g. pulse number. The range between the radar and any
scattering point is found from the round-trip travel time, while
the radial velocity of motion, vr , is given by computation of
the Doppler shift,

fD = 2vr ft

c
(2)

where ft is the instantaneous transmit frequency. In addition,
the range and velocity estimates obtained from RF sensors are
independent measurements.

A. RF Data Pre-Processing
The kinematic behavior of the signer is captured by

the frequency modulations in the phase of the received
signal. Micro-motions [7], e.g. rotations and vibrations,
result in micro-Doppler (μD) frequency modulations centered
about the main Doppler shift, which is caused by trans-
lational motion. Signing results in a time-varying pattern
of micro-Doppler frequencies. Each sign generates its own
unique patterns, which can be revealed through time-frequency
analysis. The micro-Doppler signature, or spectrogram,
is found from the square modulus of the Short-Time Fourier
Transform (STFT) of the continuous-time input signal x(t)
and can be expressed in terms of the window function, h(t),
as

S(t, ω) =
∣∣∣
∫ ∞

−∞
h(t − u)x(u)e− jωtdu

∣∣∣2. (3)

Ground clutter from stationary objects, such as furniture
and the walls, will appear in the micro-Doppler signature
as a band centered around 0 Hz. Based on earlier studies
[10], we found that for the 10 GHz and 24 GHz RF sensors,
performance is improved with removal of the ground clutter
via high pass filtering. At 77 GHz, however, the elimination of
low-speed signal components during clutter filtering results in
performance degradation [10]. Thus, a 4th-order Butterworth
high pass filter was applied only to the 10 GHz and 24 GHz
RF sensor data. Samples of the micro-Doppler signatures for
fluent ASL signers as acquired from the different RF sensors
are shown in Figure 2.

B. Transmit Frequency
The transmit frequency has a significant impact on the

perception of micro-motions by the RF sensor. As revealed by
Eq. 2, the higher the transmit frequency, the greater a Doppler
shift is observed. For movements such as signing, where the
finer-scale motion is involved both temporally and spatially,
transmission at higher frequencies has great benefits: even
small movements result in observable Doppler shifts, resulting
in greater detail in the time-frequency representation, i.e. the
micro-Doppler signature of the motion. Both the 77 GHz and
24 GHz FMCW sensors appear to acquire much crisper μD
signatures in comparison to the 10 GHz UWB radar. For
example, for the sign WALK as illustrated in Fig. 2, the number
of times that the hand waves back and forth can only be clearly
counted in 77 GHz and 24 GHz data.

C. FMCW Transmit Waveform Parameters
An ideal FMCW waveform may be specified using three

parameters: 1) the pulse duration, τ , 2) the bandwidth, β,
and 3) the number of pulses transmitted, N . The range
resolution, �R, is dependent upon the waveform bandwidth as
�R = cβ/2, while the velocity resolution, �v, is a function
of the total coherent duration that the radar interrogates the
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Fig. 2. Comparison of example micro-Doppler signatures for fluent ASL signing as measured by various RF sensors. The 77 GHz signatures are
shown for the high PRF of 6400 Hz.

Fig. 3. TI 77 GHz mmWave Studio chirp design parameters.

target, i.e. dwell time, as computed from �v = λ/Nτ , where
λ is the wavelength of the transmit waveform. Thus, the greater
the bandwidth, the better the range resolution; and the higher
the transmit frequency, the shorter the wavelength and better
the velocity resolution. Because signing can be quite dynamic
with rapid progressions, keeping the pulse duration as short as
possible would be an advantage as this also increases the sam-
pling rate across Doppler frequency. Moreover, the maximum
unambiguous velocity depends upon the pulse duration (which
for FMCW equals the pulse repetition interval): −1/τ < fD <
1/τ , where fD is as defined in Eq. 2. The shorter the pulse
duration, the greater is the maximum unambiguous velocity
that can be measured.

In real FMCW transmitters, however, additional parame-
ters factor into the specification of the transmit waveform,
as shown in Figure 3. For example, due to the finite switching
time of the transceiver, there is a short duration between the
transmission of each pulse, known as idle time, tidle . In the

Fig. 4. Minimum and maximum values of waveform parameters when
other parameters are selected as follows: # of ADC samples: 256, ADC
sampling frequency: 6.25 kbps. (Min/max T depends on N and τ .).

user interface of the TI 77 GHz sensor, not just the idle time,
but also a frame period, T , can be specified. The term frame
is borrowed from video processing literature, but, in this case,
refers to the 2D range-Doppler map that is computed from
returns received from N pulses transmitted over a coherent
processing interval (CPI). An inter-frame period, ti f , can also
be specified in the user interface to allow for a time delay
between successive CPIs. Thus, the duty cycle, d , of the entire
transmission can be defined as

d = N × tchirp

T
, (4)

where tchirp is the chirp cycle time.
For the purposes of sign language recognition, we recom-

mend that the transmit waveform not only have the minimum
possible pulse duration and maximum possible bandwidth,
but also a duty cycle as close as possible to 100%; e.g.,
minimum idle time and inter-frame period. The minimum and
maximum values that each parameter may be assigned in TI
mmWaveStudio are listed in Fig. 4. To see the effect of the
duty cycle, and in particular, the inter-frame period on the
acquired ASL data, consider the RF signatures acquired under
two different settings for hearing imitation and fluent signer,
shown in Fig. 5:

• Mode A: 77 GHz, β = 750 MHz, PRF = 3.2 kHz,
τ = 60μs, N = 128, d = 51.2%, T = 40 ms,
tidle = 100μs, ti f = 18.8 ms.
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Fig. 5. Comparison of the μD spectrograms for “BREATH” and their
envelope statistics for fluent and imitation signers.

Fig. 6. Comparison of the effect of different RF transmit modes on the
feature spaces of imitation and fluent signing data.

• Mode B: 77 GHz, β = 4 GHz, PRF = 6.4 kHz,
τ = 50μs, N = 256, d = 96%, T = 40 ms,
tidle = 100μs, ti f = 0.3 ms.

Notice that when the waveform has a low duty cycle,
and, hence, a significant inter-frame period, the signatures are
effected by vertical streaking across Doppler, which corrupts
the measurement. This is made more evident when the peak
and mean of the upper and lower envelopes are compared
across the two modes for both imitation and fluent signing. The
peak values of the upper envelope and the minimum values
of the lower envelope, i.e. the extreme velocities, are greater
in the data from the corrupted Mode A waveform versus that
from the pristine Mode B data.

Due to the erratic nature of imitation signing, which results
in greater micro-Doppler frequency diversity, the streaking
effect appears to impact imitation signing more severely than
fluent signing. This can also be seen by comparing the degree
of overlap in the feature space spanned by fluent and imitation
signing data for the two different transmit waveforms, Mode
A and Mode B, as shown in Fig. 6. Principal Component
Analysis (PCA) was used for feature extraction [26], while
the T-distributed Stochastic Neighbor Embedding (t-SNE) [27]
algorithm was used to visualize the feature spaces. The t-SNE
visualization reveals that while in imitation signing data the
differing transmit waveforms result in a tangible shift in the
centroid and extent of the imitation signing feature space,
fluent signing is not as affected by mode and the feature space
spanned by both modes predominantly overlap.

Fig. 7. Comparison of the overlap between the feature spaces of
imitation signing and fluent signing data for Mode A and Mode B.

D. Imitation Signing Versus Fluent Signing
Studies of sign language have shown that it can take ASL

learners at least 3 years to produce signs in a manner that is
perceived as fluent by other fluent signers [28]. Visualizations
of feature space as given by t-SNE can also be used to
compare the extent to which imitation signing statistically
resembles fluent signing. Consider Fig. 7, which shows the
overlap between the feature spaces of imitation and fluent
signing data for Mode A and Mode B. The overlap is greater
when the Mode B transmit waveform parameters are utilized;
but, in both cases, there is a significant discrepancy between
the feature spaces of imitation signing versus fluent signing.

This discrepancy can be quantified by considering the ability
of support vector machines (SVM) to classify imitation signing
versus fluent signing using PCA. With a Mode A transmit
waveform, SVM is able to distinguish imitation signing from
fluent signing with an accuracy of %96. With a Mode B
transmit waveform, which is optimized for spatiotemporal
parameters of signing, the acquired signatures are pristine,
and the accuracy to distinguish drops to %76. This level of
capability to distinguish between fluent and imitation signers
is still a high percentage, and reinforces the main point that
imitation signing is not representative of fluent signing.

Thus, ASL recognition algorithms should not be vali-
dated using imitation signing data. Even in the context of
ASL-sensitive human-computer interfaces (HCI), it should
be remembered that the target audience for such technolo-
gies is the Deaf community and broader population of ASL
users, who are fluent signers. Just as speech recognition sys-
tems would never be designed using vocalizations from non-
speakers, so should ASL recognition systems not be evaluated
using the imitation data of hearing non-signers.

E. Single-Sensor Classification Accuracy
Although DNNs have yielded great improvements in perfor-

mance in many fields, including RF micro-Doppler signature
classification [29], they rely on large amounts of training data
to learn the underlying representations. However, RF sensing
typically involves much fewer samples than in computer vision
due to the cost and time to acquire data from human sub-
jects. Several approaches have been proposed for addressing
the training of DNNs when the amount of training data is
limited: e.g., transfer learning and unsupervised pre-training.
In prior work [30], [31], the efficacy of these methods on
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micro-Doppler signatures for human activities was investi-
gated. Among pre-trained networks, VGGNet [32] was found
to be more effective than GoogleNet [33], while the perfor-
mance of CAEs surpassed that of VGGNet and convolutional
neural networks (CNN) when the amount of training data
exceeded 600 samples. Thus, the single-sensor classification
accuracy for each sensor, imitation signing and fluent signing
were compared for transfer learning using VGGNet and a
CAE.

1) VGGNet: VGGNet is a 16-layer convolutional neural
network (CNN), which uses 3×3 convolutional filters in each
layer. Volume size is reduced using max pooling, with the
convolutional layers followed by two fully-connected layers
having 4096 nodes per layer and a softmax classifier. A slight
modification to VGGNet was made in this work by utilizing
global average pooling in the final layer, rather than max
pooling. The two dense layers use ReLU activation functions,
with each followed by 50% dropout. A batch size of 8, epoch
number of 120, learning rate of 10−4, momentum of 0.9, and
the ADAM [34] optimizer were utilized.

VGGNet was initially pre-trained using 1.2 million optical
images from the ImageNet [35] database. This results in
improved initialization of the network weights relative to
random initialization, while also reducing the number of RF
samples required during training. Real RF data samples are
thus only used for fine tuning and testing.

2) CAE: In this work, a three-layer CAE that employs
multilevel feature extraction was utilized. A total of 128 con-
volutional filters with two different sizes (64 3×3 and 64 9×9)
were applied and their outputs concatenated. After use of unsu-
pervised pre-training to initialize network weights, the decoder
was removed and replaced with two fully-connected layers
having 128 neurons per layer. Dropout of 55% was added
after flattening the output of the encoder. A softmax layer
with 20 nodes was employed for classification.

3) Results: The recognition accuracy of 20 signs were com-
pared across all RF sensors for imitation signing versus fluent
signing. Only Mode B imitation signing data was utilized in
these assessments, given the distinct differences demonstrated
in Figure 6. In the case of fluent ASL data, both Mode A and
Mode B data were utilized with equal proportions in training
and test datasets. A ratio of 80% to 20% was used between
training and test sets. The Synthetic Minority Over-sampling
TEchnique (SMOTE) [36] was applied to equalize the number
of real RF samples used for training when comparing imitation
and fluent signing recognition accuracy. Results are tabulated
in Figure 8.

In all cases, the CAE slightly outperforms transfer learning
from ImageNet with VGGnet. At 77 GHz, the imitation
signing recognition accuracy (96%) achieved significantly
exceeds that of fluent signing (76%) by 20%. While this
at first glance may seem surprising, a visualization of the
distribution of each sign, illustrated in Figure 9 shows in
fact how distinctly group each sign is in 77 GHz imitation
signing data. At 24 GHz, the imitation signing recognition
accuracy still exceeds that of fluent signing, but with a
lesser difference of just 5%. This is primarily because of
the greater detail in the signatures of the 77 GHz sensor,

Fig. 8. Comparison of classification accuracy for imitation signing and
fluent signing using various RF sensors.

Fig. 9. Illustration of distribution of each ASL class for imitation
signing (left) and fluent signing (right).

which exhibits a greater Doppler shift for a given velocity
than the other sensors. As the coarseness of the micro-Doppler
signatures increase, the classification accuracy decreases. This
indicates that investigation into higher-frequency resolution
time-frequency transforms may lead to tangible gains for
ASL recognition applications. Moreover, these results reveal
that the use of imitation signing to evaluate ASL recognition
algorithms can lead to over optimistic results, so that even if
the objective were purely for ASL-sensitive user interfaces,
as opposed to translation, which encompasses the richness of
language, fluent ASL data should always be used for testing.

F. Imitation Signing Data as a Source for Pre-Training
Given the high classification accuracies of imitation signing

data, it may be thought, however, that one way of mitigating
the burden of acquiring fluent signing data could be by
pre-training networks on imitation signing data as opposed
to alternative, entirely unrelated sources of data, such as
ImageNet. Pre-training with imitation signing data, however,
results in significantly poorer network initialization: the bot-
tleneck classification accuracy obtained by pre-training the
CAE with the imitation signing samples is just 24%. Imitation
signing data misleads the network in its understanding of the
kinematic characteristics of each class due to the many signing
errors and differences in tempo. A better solution is to instead
illuminate the signer with RF sensors transmitting across
multiple frequencies, which allows for the extraction of unique
features at each frequency. This approach is discussed next.
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Fig. 10. Block diagrams for proposed and compared fusion approaches.

IV. MULTI-FREQUENCY FLUENT ASL RECOGNITION

Because there is no overlap in the transmit frequency bands
of the three RF sensors compared in this work, all sensors
may be simultaneously operated and used to illuminate the
participant. Various types of fusion can then be utilized to
increase the performance afforded by each sensor individually.
In decision fusion, the received return from each sensor is first
separately classified and then an overall decision made through
majority voting. In feature level fusion, separate networks are
used to extract features from each sensor, concatenated, and
then supplied a classifier. Cross-modal fusion networks [37],
[38] aim to capture both share features in the data, while
also separately extracting features specific to each modality.
This approach is particularly well-suited for fusion in RF
sensor networks because the common observations will result
in shared target-specific features, while the phenomenological
difference across frequency create sensor-specific differences
in the data.

Thus, a multi-frequency fusion network is designed that
consists of sensor-specific layers and shared layers. We com-
pare two approaches towards training the network: 1) end-
to-end training, and 2) two-step modality tuning. In end-to-end
training, all network weights are optimized in a supervised
fashion. In modality tuning, the shared layers are initially
frozen while the modality specific layers are trained. By freez-
ing the shared layers of the network, a high-level representa-
tion is transferred to the other modalities. Essentially, with
this approach, the network is being fine-tuned for a modality
as opposed to a task. After training the network for each
modality for a fixed number of iterations, the shared layers are
unfrozen and the entire network is trained jointly, allowing the
incorporation of information from the other modalities without
overfitting modality specific representations.

Fig. 11 shows the results for the various fusion methods in
comparison to the proposed multi-frequency fusion DNN with
and without modality tuning, illustrated in Fig. 10. All results
are shown for training and testing with fluent ASL signing
data. The highest classification accuracy of 95% is achieved

Fig. 11. Comparison of fusion results.

with the multi-frequency fusion DNN trained with modality
tuning, which provides a 12% increase in accuracy relative to
the same DNN with all layers trained simultaneously, 16%
increase relative to feature-level fusion, and 20% increase
relative to decision fusion.

V. CONCLUSION AND FUTURE DIRECTIONS

This work illustrates the potential of RF sensing for recog-
nition of fluent ASL signs at a high (>95%) accuracy. It is
significant that these results were obtained using only kine-
matic information captured by the micro-Doppler signatures
of the signs. In future work, we plan to investigate further per-
formance improvements enabled by fusion with spatial infor-
mation provided by multi-channel radars, namely, slant range
and direction-of-arrival, as reflected in the range-Doppler map
and range-angle representations of the RF data. Moreover,
although the currently possible radar point cloud spatial resolu-
tions are too coarse for hand shape recognition, advancements
in commercially available multi-channel radar transceivers
could one day make this possible. Indeed, the proposal of RF
sensing for silent lip reading and voice recognition [39], [40]
suggests another interesting way mouth movements perceived
by RF sensors could be exploited for ASL recognition.

While this work has examined the recognition of indepen-
dently articulated signs, in natural settings, device trigger-
ing could be embedded within connected discourse or daily
activities resulting in gross body movements, such as walking
or picking up an object. Thus, future work should consider
not just sensor positioning within a room, but also sequential
recognition in continuous, long duration recordings. We are
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currently working to integrate the RF sensors used in this
work with edge computing platforms to develop an indoor
test bed for more realistic studies of ASL recognition in smart
environments.

A second important conclusion of this work is to underscore
the importance of testing algorithms on fluent signing, which
has been demonstrated through visualization of the feature
space of imitation signing versus fluent signing and compari-
son of their respective recognition accuracies. The difference
in representation of fluent vs. imitation signing by principal
components emphasizes the gap in quantitative understanding
of sign articulation, and importance of careful calibration
of sensors to ensure appropriate spatiotemporal resolution in
the data that would allow capture of linguistic features in
continuous fluent signing.

We believe that it is essential for research on technologies
benefiting the Deaf community to be conducted in partner-
ship with the Deaf community [41], [42]. As essential as
the involvement of Deaf participants and fluent signers is,
the development of community partnerships and the conduct of
joint research with Deaf researchers are critical to ensure that
the developed technology addresses the concerns and problems
of the Deaf community as the primary audience/beneficiary.
Although the scope of this work is limited to recognition of
individual signs, in the future we plan to work with Deaf
community partners on the development of non-invasive sign
language recognition technologies under more natural settings
as a means for opening to door to the design of smart Deaf
spaces.
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